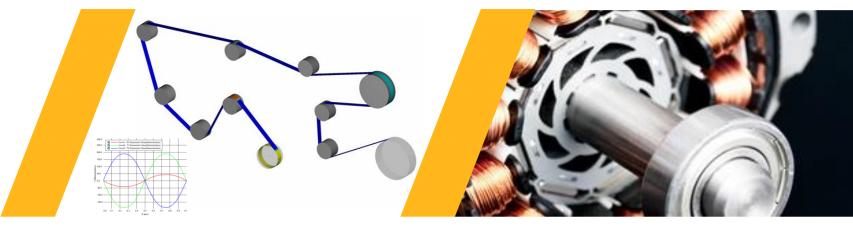

Release 2023 R1 Highlights
Ansys Motion



Ansys Motion 2023 R1 Top Highlights

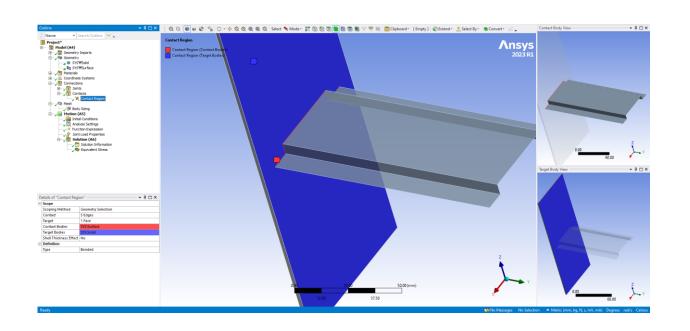
Motion Enhancements in Mechanical Interface

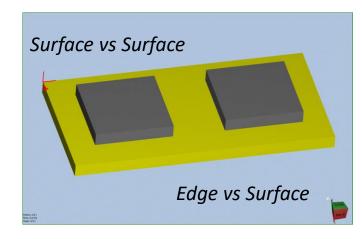
- Increased commonalities between Motion in Mechanical and other systems using Mechanical.
- Drives ease of use for customers
- New updates to Motion include joint consistency, flexible edge contacts, & cosimulation possibilities with FTire

Post-Processor Updates

✓ New utilities in post-processor include preset parts window properties, multi-axis charts, independent contact pressure plots and stress/strain plots for multilayered elements,

Solver Performance And Accuracy Improvements

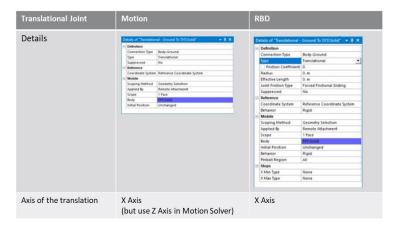

- ✓ Improvements to constraint formulations, electromagnetic force data handling lead to speedups of up to 3x
- ✓ Solution accuracy improvements to the eigenvalue solver mean models involving complex constraints can be solved more accurately first time around

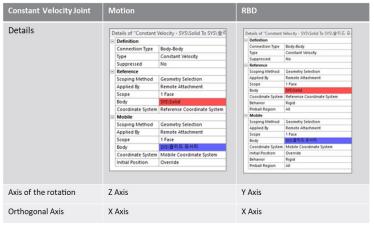


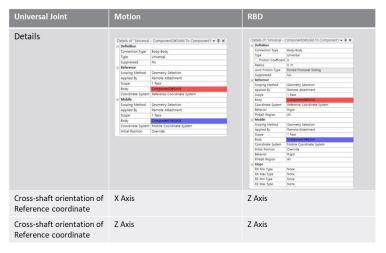
Motion in Mechanical Ansys

Edge Contact

- Flexible body edge contact is available when contact region scoping contains edges.
 - The contact entity is automatically converted when the mechanical solution is linked schematically to a Motion solution.

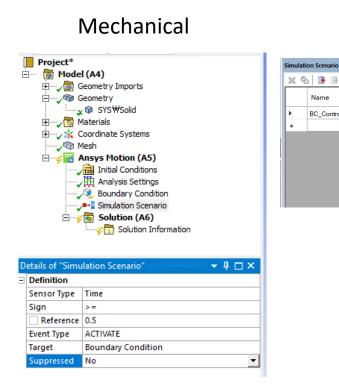

< Possible combinations >


		Contact/Base	
		Face	Edge
Target	Face	0	0
/ Action	Edge	X (O-STD)	0



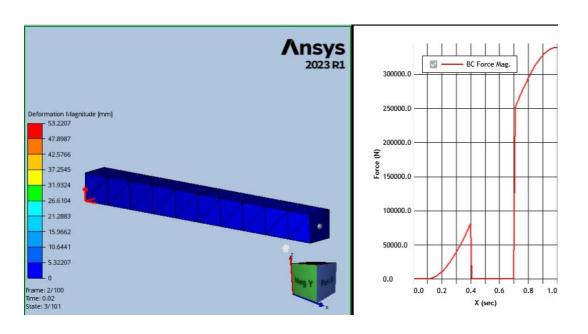
Joint consistency

 Universal Joint, Constant Velocity Joint and Translational Joint, that were not using consistent degrees of freedom between Motion and Rigid Dynamics have been made consistent.



Simulation Scenario with Boundary Conditions

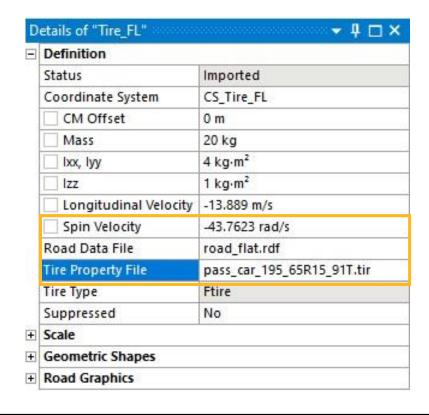
BC_Control

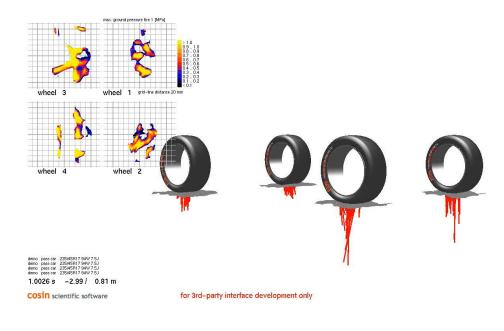

 A 'Simulation Scenario' is available to disable or enable boundary condition while running simulation according to the user-defined criterion.

Standalone Reference Event Type Sign Target Type Value >= \ 0.5 Time Y DEACTIVATE ∨ BC_FE Time Y SET OUTPUT STEP SET EIGENVALUE OUTP SET FACTOR FOR PLOT C ACTIVATE EXPORT ICF FILE

IMPORT ICF FILE

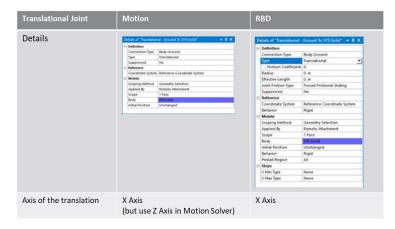
SET TO RIGID BODY

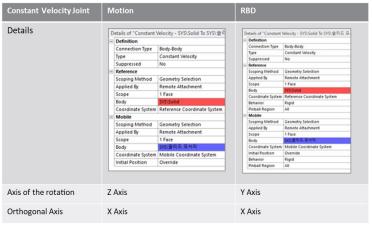



< Disable/Enable BC relative to sphere >

FTire Interfacing

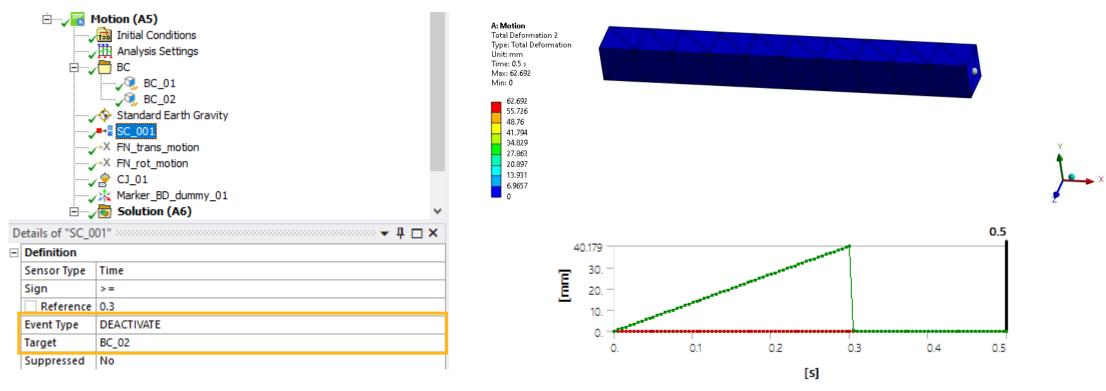
- It supports the co-simulation with *COSIN* scientific software by using FTire format tire property file.
- RGR and CRG files can also be used as a road data file.




< Visualization of FTire simulation >

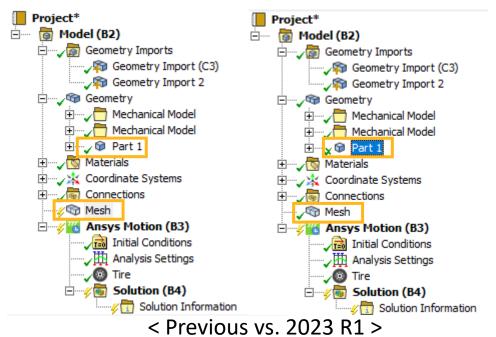
Joint Consistency

 Universal Joint, Constant Velocity Joint and Translational Joint, that were not using consistent degrees of freedom between Motion and Rigid Dynamics have been made consistent.

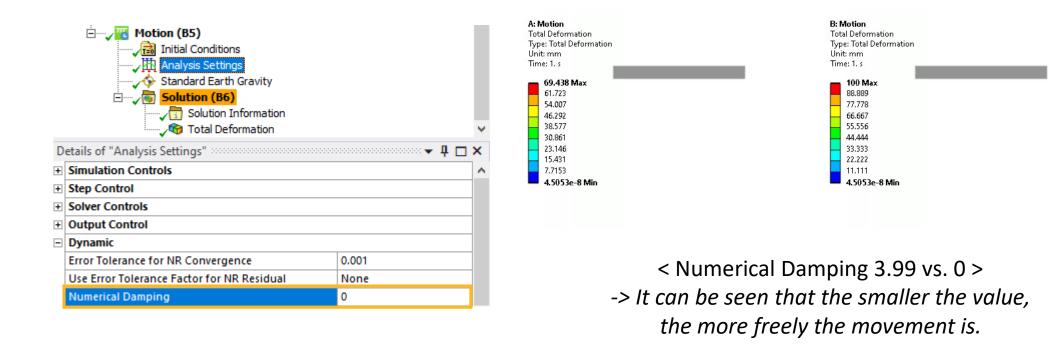


Simulation Scenario with BC

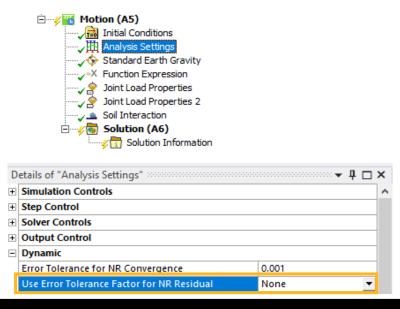
• Simulation Scenario is available to DEACTIVATE or ACTIVATE Boundary Condition while running simulation according to the user-defined criterion.



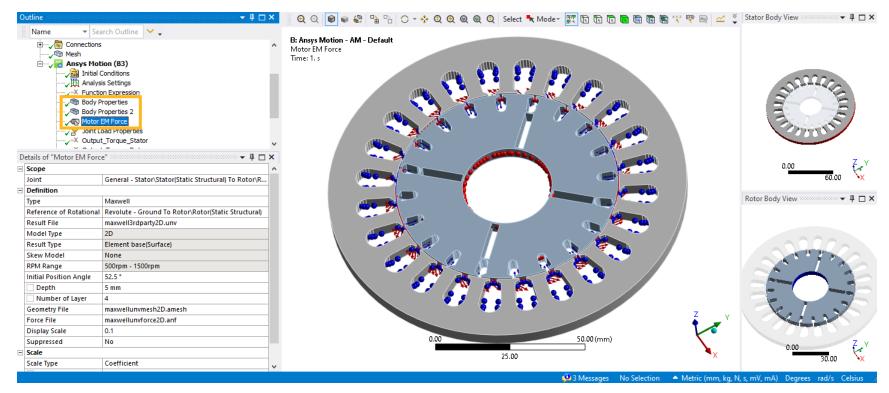
Mesh Automation


- In assembly model, users should generate mesh for imported bodies to make the model ready to solve. It is difficult for users to notice and cumbersome to mesh manually.
- Now mesh will be generated after importing the bodies. So, it is possible to use geometry importing capability in Motion without considering this limitation anymore.
- Example: After creating a geometry for Tire object.
 - Previously in this case, the state of mesh was Not Solved.
 - From 2023 R1, it will change to **Solved**.

Numerical Damping

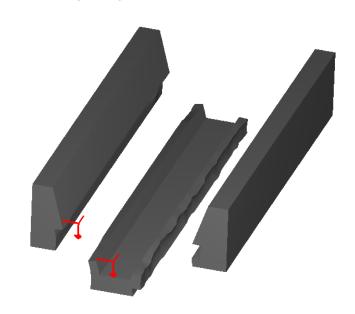

- It is now possible to input Numerical Damping within the range of values between zero and less than 4.
- Example: Pendulum simulation with Numerical Damping of 3.99 and 0.

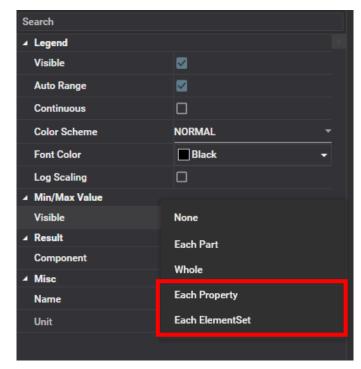
Residual Tolerance

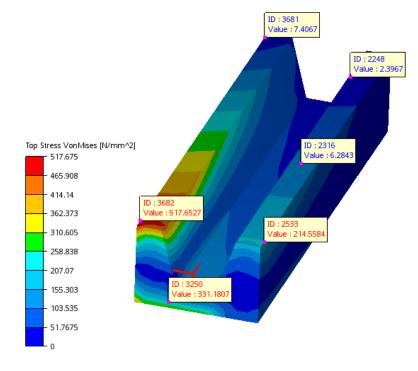

- An option to use Error Tolerance Factor for NR Residual is now available in Analysis Settings.
- It may be helpful to clear this option if the number of NR failures is greater than number of integration failures.
- Solver provides recommendations via log file message, for better options in subsequent solutions.

Solving Speed for Motor EM Force (with modal bodies)

• By optimizing the way of managing Electromagnetic force data that is imported from Maxwell, the simulation performance has been improved up to three times over previous versions.

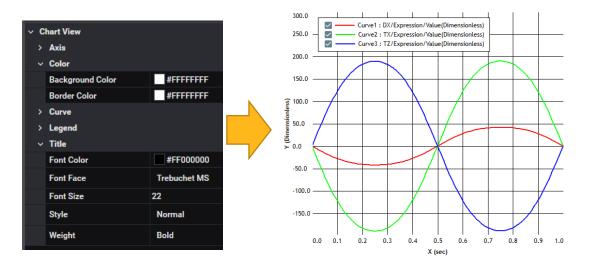

< Motor EM Force with modal stator and rotor >


Solver & Standalone Ansys

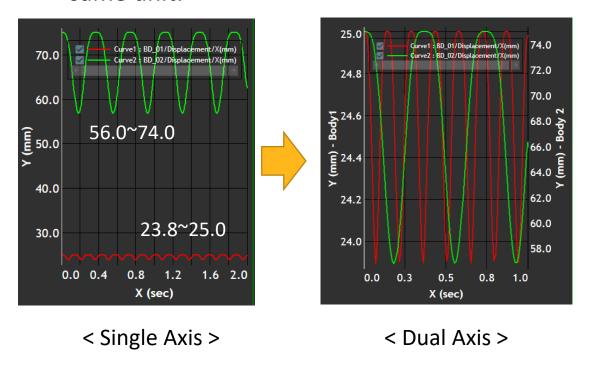

New available visible type

- A new visible type has been added. (Property, ElementSet)
- The *visible* option is useful to investigate the maximum contour values only for all displayed bodies.

< Composed of 3 different Element Sets >

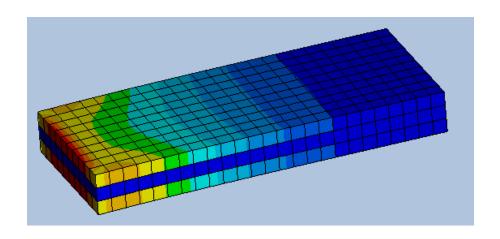


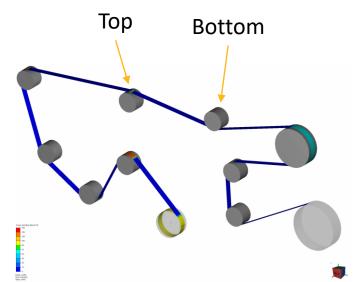
< Min / Max in Element Sets >



New utilities of Postprocessor

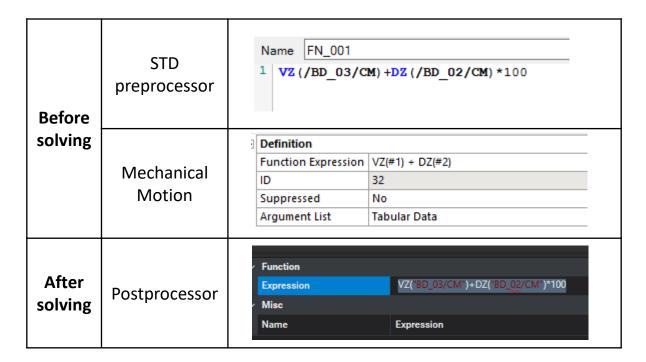
- Presets of chart windows properties are available.
 - Predefined background color, X, Y grid scale and other major properties that customer want to use as default can be applied.

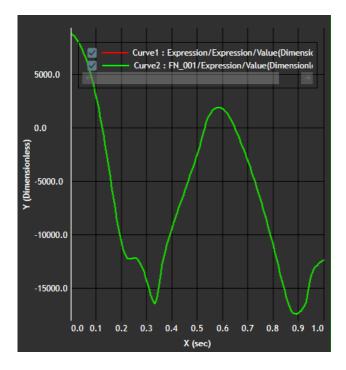

- Multiple Axis with the same unit
 - Postprocess allows to use separated axis for same unit result. It help to trace pattern of graph when two result has huge offset with same unit.


New utilities of Postprocessor

- Stress/Strain contour for multiple layered element
 - STD postprocessor was displaying nodal averaged stresses, even in the case of material discontinuity.
 - Unaveraged method to split nodal stress on material boundaries is now available.

- Independent Contact Pressure (Shell Top/Bottom)
 - Top or bottom surface stress value are selectable for stress contour.
 - Useful to investigate shell bending pattern





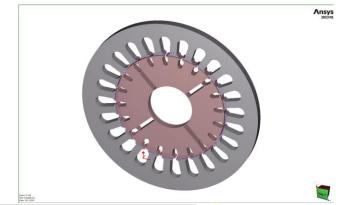
Post calculation after solving

- Function Expression in Postprocessor
 - Predefined Function entities in preprocessor are required to get a specific outputs before solving.
 - The more advanced Function evaluator that uses almost identical grammar to a preprocessor is now available in a postprocessor.

Performance improvement

Constraint formulation

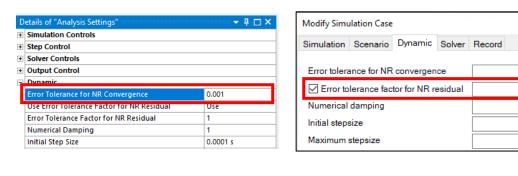
- Simulation performance is increased by the optimization of the constraint formulation.
- As the number of constraint equations increases, the performance gain also increases.

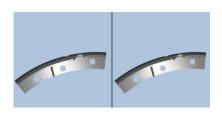

FE Nodal EF Modal 0-6/cmason 2 [pm] 0-6/c752-9 0-7572-9

•	M	lotor	EM	force
---	---	-------	-----------	-------

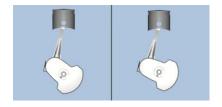
- The calculation performance of EM force calculation is improved by optimizing data handling method.

	2022 R2	2023 R1	Speed-up
System inf	Mode (108), Ef		
Simulation Inf	Output frame (50,00		
Time	36 min 12 min		<mark>X 3</mark>
Memory	2672 Mb	2707 Mb	-


		22R2	23R1	Speed-up
*	DOF	440	30	-
-	N. Cst Eqn	12	0	-
Simulation time		958	739	X 1.3
U	Used time for constraints (s)		166	X 2.3


Solution accuracy improvements

- Checking the residual criterion is added in order to control the solution's accuracy and stability.
 - Solver provides recommendations via log file message, for better options in subsequent solutions

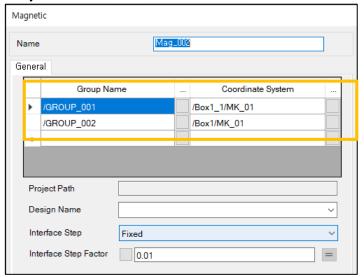


< DF_SOLVER:: RECOMMENDED SETTINGS FOR ANALYSIS >
* The newton-raphson failures occurred more than the integration failures. It may be helpful to turn off the 'Error tolerance factor for NR residual' option in the analysis settings.

- Eigen analysis improvement
 - The new algorithm uses constraint equation directly rather than using penalty.
 - Various test shows that the solution accuracy is improved, and the dependency to the penalty value also is eliminated.

FE_Modal_CPLoad_SystemEig				
22R2 (Penalty)				
Freq.	Freq.	Error (%)		
3.61E+03	3.75E+03	-3.71E+00		
3.94E+03	3.94E+03 4.18E+03			
5.92E+03 6.02E+03		-1.80E+00		
8.32E+03 8.33E+03		-1.64E-01		
8.62E+03 9.04E+03		-4.76E+00		
1.08E+04	1.15E+04	-6.85E+00		
1.22E+04	1.24E+04	-1.85E+00		

Modal_Flex_System Eigenvalue				
22R2	New			
(Penalty)	(Constratin)			
Freq.	Freq.	Error (%)		
0.00E+00	0.00E+00			
1.76E+03	1.76E+03	-7.93E-04		
2.88E+03	2.88E+03	-2.84E-02		
5.49E+03	5.53E+03	-6.80E-01		
6.40E+03	6.40E+03	-8.53E-04		
1.30E+04	1.30E+04	-1.33E-01		
1.32E+04	1.32E+04	-1.01E-02		
1.42E+04	1.44E+04	-1.09E+00		
2.15E+04	2.16E+04	-6.35E-02		


0.001

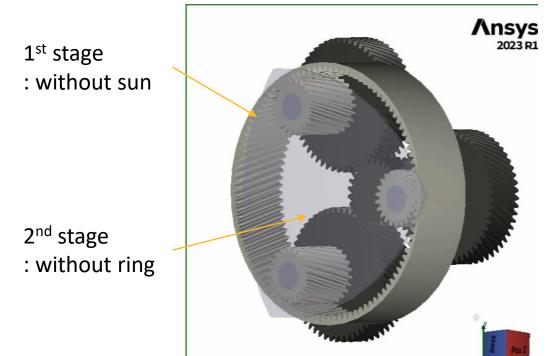
0.0001

0.01

Maxwell – Motion interface improvement

- Coordinate system at geometry center
 - The Coordinate system that represents a force/moment of Maxwell solution is automatically created at the total mass center.
 - It stabilizes numerical convergence than the case of the coordinate located at the first body's center of mass.

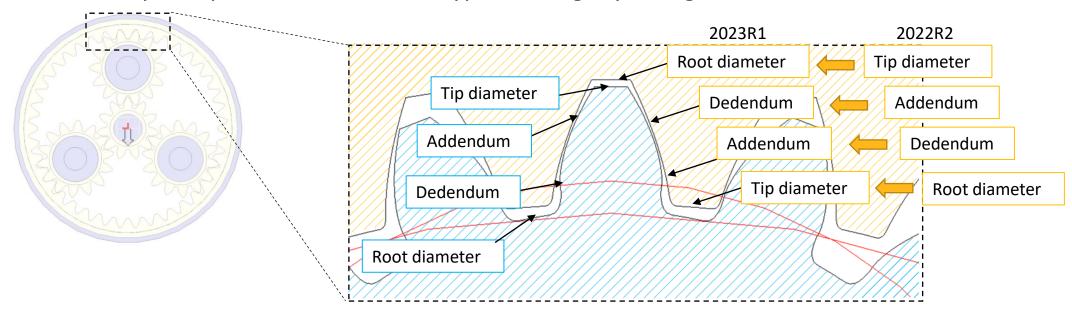

- Current simulation time
 - Transferring current simulation time enables to simulate of a system that need to apply various time-dependent functions such as a haptic.



Optional use of Sun/Ring gear

- In basic planetary gear system, suppressing Sun or Ring gear is now possible.
- Single pinion type Ravigneaux system can be modeled with the new options.

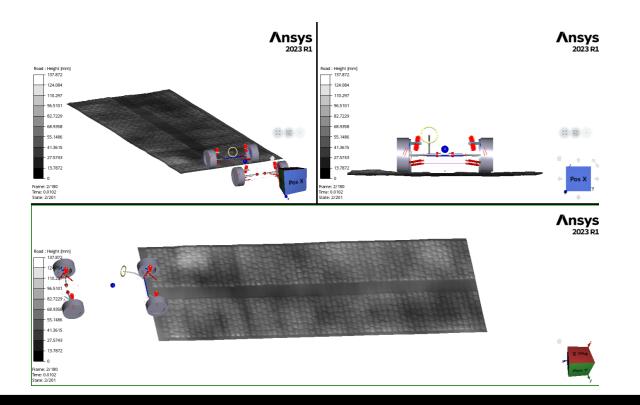
Suppress	Mechanical	Standalone
Sun gear	X	0
Ring gear	X	0
None	0	0

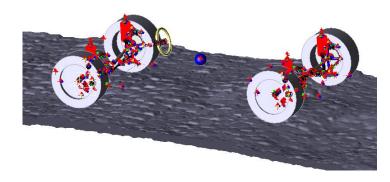


Time: 0.00844022

Gear – macro geometry parameters

- The parameters related to macro geometry have been reorganized and updated
 - The parameter names for internal gear were significantly changed to meet the standard industrial definitions.
 - The locations of their input field also re-organized so that users can recognize and change them more easily. The parameters for other types are slightly changed.




< parameters related to internal gear >

Road visualization

- Visualization of road geometry are available in Pre/Postprocessor.
 - In case of using CAR toolkit, the most common road geometry will be shown in Pre/Postprocessor
 - Other types are going to be available in next version include Mechanical Motion

Туре		STD General	STD Car toolkit	Mechanical Motion
	2D	Χ	Χ	0
rdf	3D Spline	X	Χ	X(23R2)
	3D	X	0	X(23R2)
Open CRG		Χ	0	X(23R2)
RGR		X	0	X(23R2)

Ansys