Release 2023 R1 Highlights
Ansys Motor-CAD

Ansys Motor-CAD 2023 R1 Highlights

- ✓ New pymotorCAD automation interface
- ✓ New JSON-RPC communication interface
- ✓ Upgraded internal scripting
- ✓ More flexible custom outputs
- ✓ Enhanced automated export to Maxwell

New features for machines types, hairpin windings and oil cooling

- Improved models for induction machine electromagnetics
- Multi-physics optimization for wound field machines
- ✓ Enhanced winding definition and loss calculation
- ✓ New geometries and cooling methods

Mechanical and NVH enhancements

- ✓ Induction machine NVH
- Housing and winding stiffness included in the mechanical NVH model
- Faster NVH analysis and optimization of noise metrics
- Improved mechanical stress analysis for optimization workflows

2023 R1: Product Release Detail

Motor-CAD 2023R1 new version names

- Motor-CAD version names now align with Ansys release numbers.
- Previously:
 - 2022R1 was v15.1.1
 - 2022R2 was v15.1.7

Future:

- 2023R1 pre-releases will be v2023.0.x
- 2023R1 release will be v2023.1.1
- 2023R2 release will be v2023.2.1

Automation and workflows

New pymotorcad API

- pymotorcad package used as default option in internal scripting.
- pymotorcad will be available as a pip package for 2023R1 as part of PyAnsys.
- JSON-RPC API is now used for Automation calls instead of ActiveX.
- ActiveX still supported but pymotorcad very much recommended.
- Python can easily connect to local/remote Motor-CAD instances with pymotorcad package.
- Improved/new docstrings, error messages and debugging.
- New Launch Parameters:
 - Port can be specified for RPC server on launch.
 - Motor-CAD can run script upon launch from command line


```
© UserScript © RunUserScript © test_client × © RPC_Test_All **2

import MotorCAD_Methods

mr = MotorCAD_Methods.MotorCAD()

mr = MotorCAD_Methods.MotorCAD()

print(mc.IsOpen())

print(str(mc._Program_Version))

print(str(mc._Program_Version))

mr.DoSteadyStateAnalysis()

mr.DoSteadyStateAnalysis()

mr.Quit()

mr.Quit()
```


Internal Scripting

- Internal scripting uses new JSON-RPC interface.
 - fixes issue where script would run commands on wrong Motor-CAD instance.
- Internal scripts can be used for model setup, model adjustment during run and post processing of results
- Separate scripts can be run before, during and after calculations for:
 - E-Mag
 - Thermal Steady state
 - Thermal Transient
 - Mechanical Stress
 - Mechanical Forces

```
ANSYS Motor-CAD v15.2.1.2 (No File) ----- DEBUG -----
                                                                                                                                          <u>File Edit Model Motor Type Options Defaults Editors View Results Tools Licence Print Help</u>
Geometry | Month Data | Calculation | → Stress | ■ Output Data | CE-NVH | 57 Sensitivity | Scripting
Python Scripting Settings
 Python Script Control:
                          Default Script
 Python Script File No File Selected
       # ----- FUNCTIONS RUN DURING CALCULATIONS ------
       # These will only run if using "Run During Analysis" selected
        # (Scripting -> Settings -> Run During Analysis)
        If "Run During Analysis" is selected then this script will be imported.
        # This means that anything other than setting up the MotorCAD object should
        # be moved to a function/class to avoid unexpected behaviour
        This class contains functions for steady-state thermal calculations
        lass thermal steady()
           def initial(self)
               # Called before calculation
                self.step = 0
               print('Thermal Steady State - Initial')
                # Called before each time step in calculation
                self.step = self.step + 1
                print('Step: ' + str(self.step) + '. Thermal Steady State - Main')
           def final(self)
               # Called after calculation
               print('Thermal Steady State - Final')
        # This class contains functions for trasient thermal calculations
       class thermal transient():
           def initial(self)
                # Called before calculation
   67
                self.step = 0
               print('Thermal Transient - Initial')
           def main(self)
               # Called before each time step in calculation
   71
                self.step = self.step +
               print('Step: ' + str(self.step) + '. Thermal Transient State - Main'
                                                                                                                     14 July 2022
                                                                                                                                  www.motor-design.com
```


Python version updates

- Updated internal Python to 3.9.13.
- Lab Python updated to 3.9.13.
- Now able to generate GUIs in python from the internal scripts.
- E.g. Matplotlib graphs can now be generated by internal scripts.

Enhanced Sensitivity functionality

- More options for setting sensitivity study values:
 - Single points , Linear range, logarithmic range

Increased flexibility for Custom outputs

- Python custom outputs have been added to sensitivity study.
- Added option to load default python custom output file at startup.
- Users can now have their own custom parameters setup whenever run they Motor-CAD.

Maxwell export enhancements

- Added use of magnet and rotor UDPs export for BPMOR and BPM machines with Surface/Inset/Embedded Radial/Parallel/Breadloaf rotor types
- Added use of stator UDP for export of Parallel Tooth/SqBase slots for BPM, BPMOR, IM, SYNC and SYNCREL machine types.
- Included Stator Pole Taper Angle in UDP export for SRM machines.
- Improved Outlines export; polyline coordinates drawn to tolerance in Motor-CAD,
- Removed inner and outer rotating bands from airgap in Maxwell export, replacing with single central rotating band.

Electric machine topology enhancements

Induction Machine Improvements

- Lab and Emag modules now use the same saturation model. Increased simplicity for the user, don't have to build it twice, and can now adjust the resolution in Lab.
- Calculation improvements (rotor leakage inductance correction).
- Rotor bar slot fill factors.
- Variable stator leakage inductance in Lab (calculated at model build time).
- Lab fixed parameter calculation improvements (now calculated using model build speed, current and user specified slip).
- Power factor, D&Q flux linkages and currents outputted from Single Load Point.

ANSYS Motor-CAD v2023.0.1.3 (QA10_i9.mot)* ----- WARNING TEST RELEASE ONLY - NOT VALIDATED -----

Transient IM calculation

- New Single operating point transient electromagnetic calculation with rotation for induction machines.
- Adjustable initialisation cycles to speed up convergence.
 - Initial cycles run non-rotating analysis, for rapid rotor current convergence (resistivity adjusted to account for slip).
 - Generator mode solved at 2x synchronous speed
 - Remaining cycles run with rotation.

New SYNC Geometry Ratios

- Geometry Ratios added to SYNC machine templates to enable use with optiSLang.
- Salient Pole, Parallel Tooth and Parallel Slot rotor geometries.
- Avoids invalid geometry definitions.
- When using ratios the geometries are always valid.

optiSLang integration for SYNC machines

- Automatic generation of optiSLang study for the SYNC machine.
- No knowledge of scripting required.
- Ratio based geometries always valid.

Standardised Winding definition

- Simplification of winding definition.
- Winding pattern now used as definitive source of winding data.
- No longer option to specify number of conductors in slot for thermal model.

New hairpin winding pattern generation

- New automatic elementary winding method.
- More accurate end-winding length calculation.
- Wave winding following parallel path impedance balancing rules.

High fidelity Lab AC winding loss map

- Calculation of the Lab AC winding loss map using full FEA method.
- Improved AC winding loss calculation accuracy with variation of speed.

Different hairpin conductor sizes

- Different sizes of hairpin conductors in slot.
- Used to reduce AC winding losses in conductors near slot opening.

Thermal Map in Lab for IM and SYNC machines

Thermal performance of Induction and Synchronous machines across full torque/speed range.

Flat surface magnet geometry

- Rectangular magnets mounted on rotor lamination surface.
- Can be defined as dimensions or ratios.
- Can make use of rotor notches if required.

Outer rotor magnet reduction geometry

 New geometry parameter to shape the outer rotor magnets.

• Shaping of airgap to reduce torque ripple.

Spray cooling method improvements

- Improved modelling following research project with University of Nottingham
- Independent cooling circuits for axial, radial drip and rotor/shaft nozzles
- New Heat Transfer Coefficient correlations simplifies HTC calibration

Mechanical and NVH

Ansys

NVH improvements

- New Induction machine NVH calculation
 - Define multi-speed operating points using RPM, line current and slip.
 - Enables full NVH calculation and force export for IM.
 - Transient IM calculation improvements significantly speed up calculation for reasonable results.

Reduced cycle NVH

- Use 1/6 electrical cycle symmetry
 - Forces calculated for 1/6th of the cycle, rest populated using rotor and stator symmetry
- Use EMag multistatic FEA solver
- Speed up of NVH calculations
- Transient solver remains the default, reduced multistatic can be selected if preferred

Calculated forces for one electrical cycle around the stator

NVH improvements

- Option to include housing as well as stator in analytical stiffness
 & modal calculation.
- Single threaded solver option for increased reliability.
- Outputs defined to allow NVH assessment to be included with OptiSLang optimisation.
- Results exported for improved integration with Ansys Mechanical/VRExperience/Sound NVH process.
- Improvements in useability.

Average post and bridge stresses – V web and U magnets

- Gives a measure of the stresses in important parts of rotor lamination.
- Particularly useful for optimisation studies.
- Enable verbose FEA outputs to show measurement locations in FEA viewer.

General enhancements

Efficiency Map comparison

- Improved efficiency map comparison option.
- Allows comparison of data with different x/y ranges.
- Data points are interpolated.

Lab axial scaling

- Active length scaling for stator, rotor & magnet length.
- Accurate performance & loss calculations without rebuilding Lab model for different axial lengths.
- Thermal model axial length adjustments for coupled solution.
- Significant speed up of geometry optimisation e.g. optiSLang.

Granta material data for Toda Kogyo bonded magnets

Granta material data for Sumitomo SMC steels

Ansys