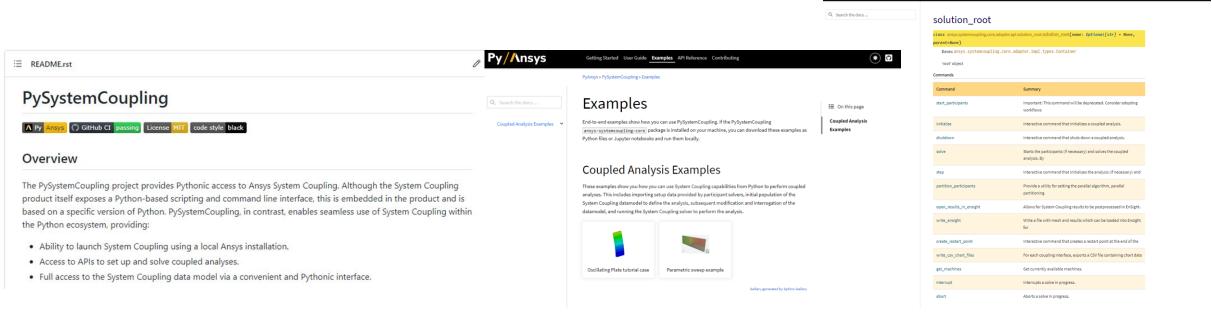

Release 2023 R1 Highlights
System Coupling

2023 R1 Update Highlights

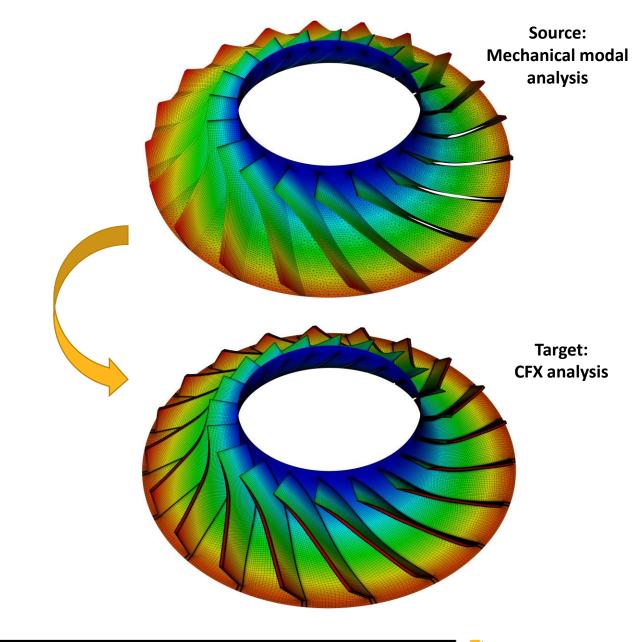
- PyAnsys/PySystemCoupling
- Aerodamping
- Automatic Interface Alignment
- Mapping Accuracy Improvements
- User Interface Improvements
- Other updates

System Coupling

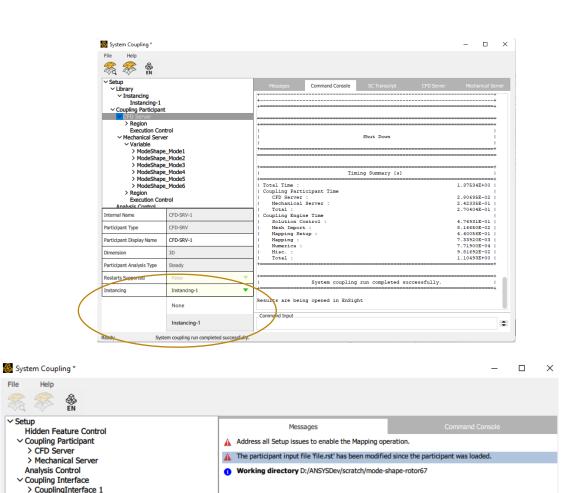

PySystemCoupling

- Open-source Python module for access to System Coupling
- · github.com/pyansys/pysystem-coupling
- Targeting first release at 2023 R1 RTP (January 2023)
- Focus on desktop deployment
 - Allows full breadth of System Coupling workflows to be executed from a Python console
 - Allows easy integration with other PyAnsys products
- Documentation
 - Automatically generated APIs reference
 - Examples via Sphinx gallery

Getting Started User Guide API Reference Contributing

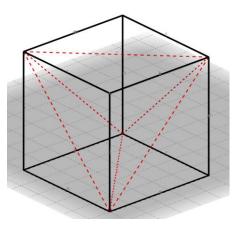

Py//\nsys

Aerodamping

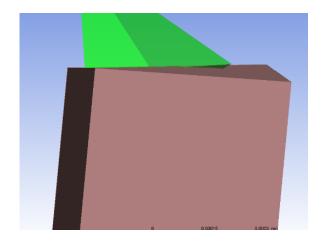

- Enable mapping of complex mode shapes for cases with cyclic symmetry
- Multi-region support
 - For cases where blade surface, tip, hub, etc. are in separate regions
- Full access to System Coupling features for easier mapping
 - Instancing
 - Geometry transformations
 - Non-overlap extrapolation algorithm
 - Previewing mapping results in EnSight
 - Automatic interface alignment (beta)
 - Etc.

Aerodamping

- Specify CFD instancing from System **Coupling GUI**
- Detect input file changes if the underlying modal analysis was updated


∨ Setup

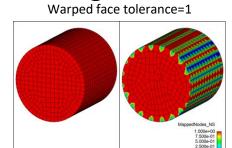
Solution Control > Output Control

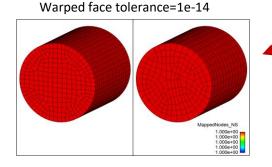

Address all Setup issues.

Mapping Accuracy Improvements

- Warped faces handling
- Volume mapper uses optimized cell splitting algorithm
 - Assumes all faces are planar
- Detect if a face is warped or not
- Different in 2023 R1
 - Turn off optimized cell splitting for cells with warped faces
 - Improves conservation
 - Turn on optimized cell splitting for high-order cells without warped faces
 - Dramatic speedup in mapping
 - 120 [s] -> 4 [s] for a test case

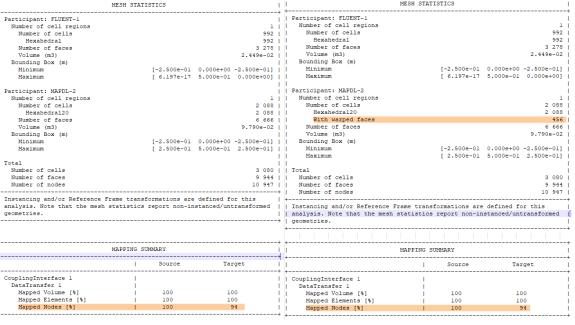
Optimized cell splitting assumes cells with no warped faces


Hexahedron element with warped faces renders optimized cell splitting inaccurate



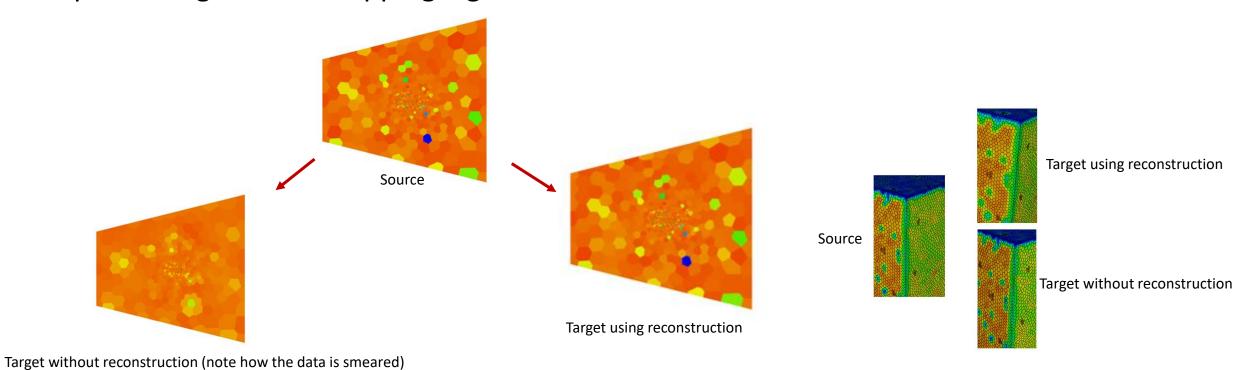
Mapping Accuracy Improvements

Warped mesh faces handling

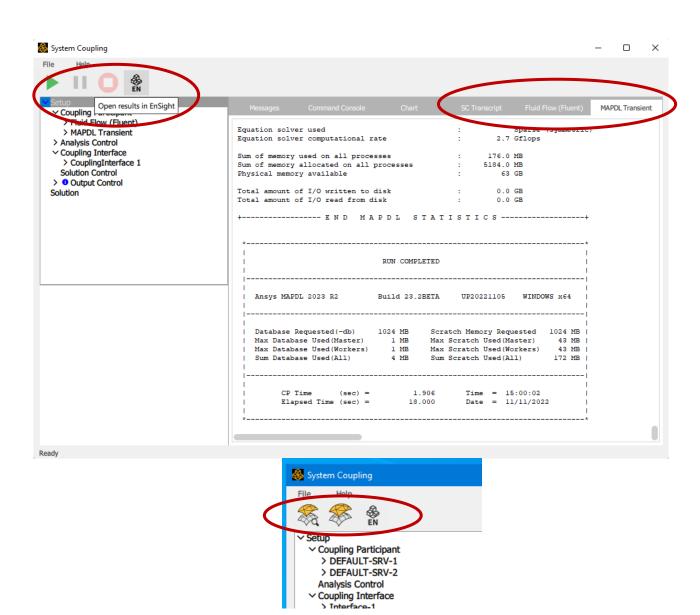

Warped face tolerance=1

Better mapping quality with warped faces detection turned on

Mapping accuracy visualization with warped face tolerance 1,1e-6,1e-14 (from left to right)


		MESH STATIS	TICS	
	rticipant: FLUENT-1 Number of cell regions			
	Number of cells			992
	Hexahedral			992
	With warped faces			944
	Number of faces			3 278
	Volume (m3)			2.449e-02
	Bounding Box (m) Minimum			
	Minimum			0.000e+00 -2.500e-01]
	Maximum		[6.19/e-1/	5.000e-01 0.000e+00]
	rticipant: MAPDL-2			
1	Number of cell regions			1
	Number of cells			2 088
	Hexahedra120			2 088
	With warped faces			2 088
	Number of faces			6 666
	Volume (m3)			9.790e-02
-	Bounding Box (m) Minimum			
	Maximum			0.000e+00 -2.500e-01] 5.000e-01 2.500e-011
	raximum		[2.500e=01	5.000e-01 2.500e-01]
Tot	1			
	Number of cells			3 080
	Number of faces			9 944
	Number of nodes			10 947
ana	stancing and/or Reference H alysis. Note that the mesh ometries.			
		MAPPING SUM	MARY	
			Source	Target
	plingInterface l	1		
Ι	DataTransfer 1	1		
	Mapped Volume [%]	1	100	100
	Mapped Elements [%] Mapped Nodes [%]	1	100	100

Log file mesh statics and mapping summary comparison

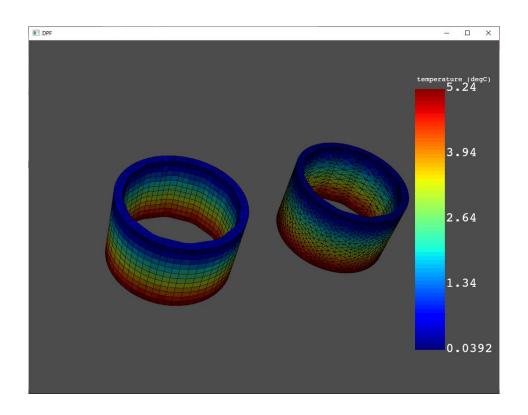

Mapping Accuracy Improvements

- Implemented new "Source Element RBF" algorithm
 - Directly uses source data if it's on elements
- Fully eliminated node-element reconstruction steps for profilepreserving volume mapping algorithms

User Interface Improvements

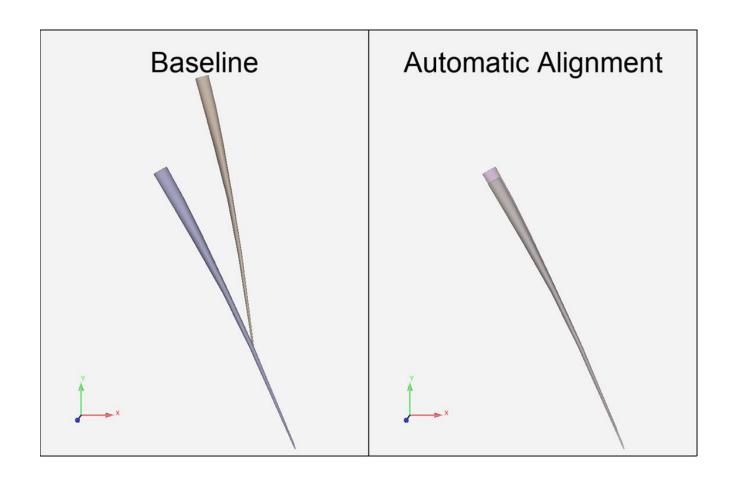
- Participant solver transcripts available in System Coupling GUI
 - Provides a more comprehensive view of the coupled analysis inside one GUI
 - System Coupling transcript (.scl file) is also available
 - Participant APIs updated to allow participants to provide transcript file name
- GUI toolbar buttons
 - Common operations available with one click (Solve, Open Results in EnSight, etc.)
 - More to come in future releases...

User Interface Improvements


- Custom participant partitioning for distributed parallel
 - Allows full flexibility for distributing participants for parallel runs
 - Call GetMachines() query to get the list of machines available at run-time
 - Useful if machines unknown ahead of time, e.g. HPC cluster environment with job scheduler
 - Use Python script to assign cores and machines to participants
 - Call PartitionParticipants() command takes partitioning information from above and translates it to participant execution commands

```
Example script
allMachines = GetMachines
ml = allMachin
   = allMachines[1]
m3 = allMachines[2]
aedtMachines = []
aedtMachines.append(ml.copy())
aedtMachines.append(m2.copy())
fluentMachines = []
fluentMachines.append(ml.copy())
fluentMachines.append(m2.copy())
fluentMachines.append(m3.copy())
partitioningInfo = {}
partitioningInfo['AEDT-1'] = aedtMachines
PartitionParticipants(PartitioningInfo = partitioningInfo
                                                         xecution Information
                              System Coupling
                                Command Line Arguments:
                                  --cnf=lebvmsles124uge1:8,lebvmsles124uge2:8,lebvmsles124uge3:8 -R run.p
                                Working Directory:
                                  /net/nfs.lebisilon/home/aalhoura/tests/custompartitioning/aedt-2d-trans
                                  ient-fluent-3d-steady-auto
                              Ansys Electronics Desktop
                                Execution Command:
                                  "/net/nfs.lebisilon/home/aalhoura/AnsysEM/v231/Linux64/ansysedt" -ng -f
                                  eatures=SF6694 NON GRAPHICAL COMMAND EXECUTION -distributed -auto -mach
                                  inelist list=lebvmsles124uge1:-1:8,lebvmsles124uge2:-1:8 -scport 44391
                                  -schost lebvmsles124ugel.ansys.com -scname "AEDT-1" -runscript "Electri
                                  cMotor 2D Transient SystemCouplingSetupl.py"
                                Working Directory:
                                  /net/nfs.lebisilon/home/aalhoura/tests/custompartitioning/aedt-2d-trans
                                  ient-fluent-3d-steady-auto/Maxwell
                              Fluid Flow (Fluent)
                                Execution Command:
                                  "/net/nfs.lebisilon/home/aalhoura/ansys inc/v231/fluent/bin/fluent" 3dd
                                  p -g -scport=44391 -schost=lebvmsles124ugel.ansys.com -scname="FLUENT-2
                                  " -i FLUENT-2.jou -t24 -cnf=lebvmsles124uge1:8,lebvmsles124uge2:8,lebvm
                                  /net/nfs.lebisilon/home/aalhoura/tests/custompartitioning/aedt-2d-trans
```


DPF Mapping Operators


- System Coupling mapping library embedded inside DPF operators
- New DPF operators
 - 1. sc_mapping
 - Simplified workflow version to map one variable easily
 - create_sc_mapping_workflow + mapping_workflow
 - Separates mapping weights calculation and interpolation
 - Allows interpolating multiple variables efficiently
- Available mapping features
 - Surface, volume
 - Polyhedral meshes
 - Meshes with high order elements
 - Point cloud mapping
 - Vectors, scalars
 - Conservative, profile-preserving mapping

Automatic Interface Alignment (Beta)

- Align source and target geometry automatically
- Rigid body alignment (translation and rotation)
- Can work together with manual transformations, e.g.
 - 1. Manual transformation
 - 2. Automatic alignment
 - 3. Manual transformation
- Work in progress more to come in 2023 R2

Ansys