Release 2023 R1 Highlights
Signal and Power Integrity

Ansys HFSS, Slwave, Q3D, HF Circuit



# Ansys signal and power integrity 2023 R1 highlights



- ✓ Improved workflows for layout component in HFSS 3D
- ✓ **Arbitrary backdrill** depth in HFSS 3D Layout
- ✓ Waveport support and enhancements for Brodaband Fast sweep in HFSS 3D Layout
- ✓ New DC IR plot features, validation check optimizations and HFSS regions enhancements for Slwave
- ✓ Support for asymmetrical rise/fall times for IBIS AMI models and new COM workflow in Circuits
- ✓ Q3D distributed CG solver and new enhanced DC-to-AC transition region solver



HFSS 3D

**Ansys** 

# Layout component workflow [Beta]

- New workflow for component placement
- Users can use reference coordinate systems defined in EDB in HFSS
  - Easily place connectors on right locations
- Supports mesh fusion
- Layout component's bounding box and ports are actual geometry. Rest of the layout is only for visualization
- Allow editing the layout component definition right from HFSS
- Visualization settings can be set by stack up layers or individual nets





# Layout component workflow [Beta]

32 cores

Time Max RAM

SMA connector on board example

- Mesh fusion with 3 domains plus native FEM

Layout component and 2 SMA connectors

- Mesh fusion with <u>new</u> iterative solver







# Layout component workflow [Beta]

- Full PCB assembly
  - Mesh fusion with 29 domains plus native FEM

| Component Name          | Meshing Type     | Enable |  |
|-------------------------|------------------|--------|--|
| 10x2_Connector1         | Volume - Classic | ~      |  |
| Bulk_Capacitor1         | Volume - Classic | ~      |  |
| Capacitor_1_1           | Volume - Classic | ~      |  |
| Capacitor_1_2           | Volume - Classic | ~      |  |
| Capacitor_1_3           | Volume - Classic | ~      |  |
| Capacitor_1_4           | Volume - Classic | ~      |  |
| Capacitor_1_5           | Volume - Classic | ~      |  |
| Capacitor_1_6           | Volume - Classic | ~      |  |
| Capacitor_1_7           | Volume - Classic | ~      |  |
| Capacitor_2_1           | Volume - Classic | ~      |  |
| Capacitor_2_2           | Volume - Classic | ~      |  |
| Capacitor_2_3           | Volume - Classic | ~      |  |
| Capacitor_2_4           | Volume - Classic | ~      |  |
| Capacitor_3_1           | Volume - Classic | ~      |  |
| HDMI_Connector1         | Volume - Classic | ~      |  |
| HDMI_Connector2         | Volume - Classic | ~      |  |
| Header5_Male1           | Volume - Classic | ~      |  |
| Header5_Male2           | Volume - Classic | ~      |  |
| Inductor1               | Volume - Classic | ~      |  |
| LC3_1                   | Volume - Phi     | ~      |  |
| Resistor_1_1            | Volume - Classic | ~      |  |
| Resistor_2_1            | Volume - Classic | ~      |  |
| Resistor_2_2            | Volume - Classic | ~      |  |
| Resistor_2_3            | Volume - Classic | ~      |  |
| Resistor_3_1            | Volume - Classic | ~      |  |
| Ribbon_Cable_Connector1 | Volume - Classic | ~      |  |
| U100_1                  | Volume - Classic | ~      |  |
| U101_1                  | Volume - Classic | ~      |  |
| USB_Connector1          | Volume - Classic | ~      |  |









### Modal Port in Terminal Design

- Allow both modal and terminal wave/lumped port in terminal solution type
- Allow both modal and terminal 3D components in a terminal solution type
- If there are modal ports in the design, edit source excitation switches to power





# Radiated Immunity setup with Driven Modal and Driven Terminal components





**HFSS 3D Layout** 

**Ansys** 

# Arbitrary backdrill depth

- Via stubs can create significant signal integrity disturbances. Backdrilling is a technique that removes these stubs and can be defined as:
  - **A. By Depth**: a user-specified length from above the top of the stackup and/or below the bottom of the stackup
  - **B.** By Layer with an offset: The backdrill will reach to the specified distance offset on the layer from above or below
  - **C. By Layer (with no offset):**a user-selected layer is chosen from a drop-down menu. The backdrill will reach it from or below layer









# Effects of backdrill on a 18GBPS signal





### Waveport support for Broadband Fast sweep in 3DL [Beta]

- Improved low frequency stability and performance
- Improvements to port Z0 extrapolation



### Iterative solver option for mesh fusion in HFSS 3D Layout





6 excitations





**Slwave** 

**Ansys** 

### DC IR post processing improvements

- 3D Voltage drop plot
  - Easier to visualize voltage drop hot spots
  - 3D plot view
- Highlight maximum voltage with white squares
- Add Padstack information in DC Element data report









### MCAD export migration to Parasolid enhancements

- Improvements to port radial extent in HFSS 3D export
- Enhancements to Q3D net classification and performance
- Support spheroidal/oblong and cylinder solderballs







# Slwave HFSS Region clipping and configuration enhancements [Beta]

- Provide an alternative way to generate HFSS regions in 3D Layout
  - Clip the dielectric to exact match the region outline and assign radiation boundary to exact match the region outline
  - Clip traces at region extents and recess the trace length by a factor of the trace width so the lumped ports are located inside the cutout (instead of been placed at the region boundary)



# Validation Check performance optimizations

- Significant run time improvements compared to 2022 R2
- Performance improvements can be largely seen in designs containing large numbers of vias
  - Optimization to via-via overlapping algorithm





### Slwave miscellaneous enhancements

- Specify trace cross section orientation
  - Users can flip the orientation of cross sections
- SNA report and scripting
  - SNA now support scripting and it can be executed in non graphical mode
  - Export reports in HTML and CSV formats
- Handling of S-parameter components
  - Improve the robustness of simulation when using Sparameter models as components
  - Automatic verification of symmetry, DC extrapolations, etc...





# CPA 2023 R1

- Package netlist remapping to fit any arbitrary chip
  - Objective is to map an already extracted package netlist from CPA into the footprint of a new chip
  - Considering that the model has already been extracted using a PLOC file, this new capability remaps the results using a new PLOC file.
- Support multiple ground nets for VRMs

- Until 2022 R2 CPA had a restriction of using a single global reference net

- Improvements to the robustness, reliability and repeatability of results improvements
  - Improve the robustness of error/exception handling in the solver code and providing informative messages to users





# **Q3D Extractor**



# DC to AC transition region RL analysis (Beta)

- New transition region solver to explicitly solve inside conductors at AC
- Improves results in the transition region for specific applications (power electronics)

### **Busbar example**







### Distributed CG solver (Beta)

- In earlier versions the HPC on the CG solver supported only the distribution of the nets or frequencies.
- Large problems with a large mesh could run out of memory due to the limitation of RAM on a single machine
- In 2023 R1 version a distributed memory CG solver (MPI-FMM) has been developed in order to handle designs that require mesh sizes of hundreds of millions of elements.
- In this new solver we redistribute the mesh to the MPI-tasks available and as a result each task handles only a partial mesh.





# Distributed CG solver (Beta)

### Large capacitive touchscreen example



| Cores | Time    | Speed-up |  |
|-------|---------|----------|--|
| 4     | 3:00:05 | 1.0      |  |
| 16    | 1:03:28 | 2.8      |  |
| 32    | 0:41:51 | 4.3      |  |
| 64    | 0:21:00 | 8.6      |  |
| 96    | 0:14:02 | 12.8     |  |



### Electric and Magnetic field computation performance

• New algorithm to compute E and H fields on the surface and on the volume



# PCKG on PCB in a drone example

| Version | Time     |  |  |
|---------|----------|--|--|
| 2022 R2 | 00:41:31 |  |  |
| 2023 R1 | 00:12:47 |  |  |



# / 1

### Electric and Magnetic field computation performance



# PCB with components

| Version | Time     |  |  |
|---------|----------|--|--|
| 2022 R2 | 00:18:35 |  |  |
| 2023 R1 | 00:00:47 |  |  |

2023 R1 is 23.7x faster for this example



# **Circuits and SPISim**



### 2023.1 – EMI Receiver [Beta]

### • EMI Receiver

- Transient signal undergoes a Short-Time-Fourier-Transform (STFT) analysis with Gaussian window and output a 3D spectrogram data which shows frequency component change in the signal with respect to time.
- The Spectrogram data is passed through the desired EMI detectors to obtain the emissions in the selected frequency range.
- Supports CISPR16-1-1 Band A to D with Peak,
   QuasiPeak, Average and RMS Detections.







# 2023.1 – EMI Receiver [Beta]





### 2023.1 – Adaptive time stepping improvements

### **Motivation:**

- Small time step can improve the chance of convergence.
- Small time step slows down simulation.
- Would like a moderately large time step without loss of accuracy and convergency.

### **Solution:**

- Use the number of Newton iterations as an indicator of nonlinearity.
- Keep the philosophy of the existing multistage time step control algorithm.
- Increase time step for weak/moderate nonlinearity.

### Impact:

- Reduce the total number of time steps and Newton iterations.
- Improve simulation time.



|       | Two-st         | tage LTE Ada   | daptivity Two-stage LTE & nonlinearity Adaptivity |                | Impr. in       | Impr. in Sim. |                    |          |
|-------|----------------|----------------|---------------------------------------------------|----------------|----------------|---------------|--------------------|----------|
| h     | # time<br>step | Avg.<br>Newton | cpu<br>time(s)                                    | # time<br>step | Avg.<br>Newton | cpu time(s)   | Newton<br>step (%) | time (%) |
| 1e-9  | 9.90e+02       | 3.8            | 0.233                                             | 9.48e+02       | 3.9            | 0.223         | 4.24               | 4.29     |
| 1e-11 | 7.41e+04       | 2              | 7.18                                              | 6.69e+04       | 2              | 6.702         | 9.72               | 6.66     |
| 1e-13 | 7.39e+06       | 2              | 718.997                                           | 6.68e+06       | 2              | 658.687       | 9.61               | 8.39     |



# State space fitting enhancements

- Improvements to Q3D RLGC Spice export
  - With the new AC-to-DC transitions region Q3D solver a new algorithm was developed to enforce stability and automatically perform causal correction.
- New Augmented Data Passivity Enforcement (ADPE) algorithm[Beta]
  - New state-space fitting option that helps with passivity enforcement when the S-data is undersampled.
  - Improves the use of Tsuk-White Algorithm (TWA) interpolation and passivity enforcement where the set of basis points are usually under-sampled.







### AMI Support for DDR5 asymmetric rising/falling edges

### Motivation:

 AMI was originally developed for SerDes applications. The channel and the IBIS model driving it for the step response computation were assumed fully LTI. A single step (impulse) response characterized the entire channel.

### Issue:

- AMI simulations are now used for DDR5 devices.
- DQ channels are single-ended. AMI model makers provide IBIS models that include one significant non-linearity, the rising and falling edges are significantly different.

### Solution:

- For single-ended applications, AMI analysis no longer assumes a single step (impulse) response is sufficient.
- Channel output is based on convolving with different rising/falling responses.

### Effect:

• Results will be correct for asymmetric signals (e.g., DDR5 DQ).







### Correlated crosstalk option for VerifEye

- Correlated crosstalk preserves the delays (i.e. jitter) between victim and aggressor lanes
- Uncorrelated crosstalk simulates the effects of crosstalk energy that can occur anywhere in the victim's eye diagram with equal probability





# Correlated crosstalk VerifEye analysis of two parallel traces







549.65

### Calculate ERL w/o using COM flow

### **Motivation:**

- SPISim's COM provides ERL calculation, but COM requires a config. settings which has 100+ input parameters.
- AEDT's user would like to calculate ERL directly without going through COM flow.

### **Solution:**

- Flow has been refactored. An individual ERL menu item has been added in the SPro menu for direct access.
- NG batch mode and UDO/UDS based approaches have also been implemented to support direct ERL calculation.

### **Impact:**

- AEDT user can import one or more .snp file(s) and calculate their ERL values in GUI or batch mode.
- HFSS 3D Layout/Circuit users now can optimize their design based on ERL results directly.



ERL: Effective Return Loss using PTDR

### **ERL Computation Parameters**

- □ N<sub>by</sub> is the number for DFE taps or set by referencing clause
- ☐ T<sub>b</sub> is the time for one symbol (aka UI) in ns
- ☐ t is time in ns
- $\Box$   $T_{fx}$  is the time in ns associated with the end of the test fixture
- $\Box$   $\beta_{r}$  is loss/ratio per unit time derived from the reference package loss in GHz
- □ ρ<sub>x</sub> is the permitted reflection from the "missing side" of the channel
   ρ<sub>x</sub> is a reflection ratio and thus unitless







### SPISim: New SERDES Compliance checks

### **Motivation:**

- AEDT/HSFSS users would like to perform compliance check for some SERDES standards/specs.
- Some specs. have input data comprised of various sections, automatic "cascading" may be needed during process.

### **Solution:**

- Enhanced SPISim's compliance check to support eight more industry standards.
- Will "cascaded" .snp files automatically if needed for various aspect of compliance checking.
- Both SPISim GUI mode and NG batch (GUI or non-GUI) are supported.
- Also provide TDR report for additional design performance metrices report.

### **Impact:**

 AEDT/HFSS users can now perform compliance checks for generated .snp files within the ANSYS environment/toolsets.





# **AEDT Desktop and Core**

**Ansys** 

# Ansys Electronics Desktop

- Parasolid kernel for 3D Modeler
  - Official migration to Parasolid modeling kernel
- Auto multi-level distribution for LSDSO
  - Each ansysedt process is free to automatically determine how to best utilize allocated available cores (solver distribution, frequency distribution, etc...)
- Native non-graphical image export
  - ExportModelImageToFile script command works in graphical and -ng mode on both Windows & Linux
- Enhancements to object-oriented property scripting
  - Additional scripts to handle datasets and retrieve information



# **Ansys**